Molecular identity and function in transepithelial transport of K(ATP) channels in alveolar epithelial cells.
نویسندگان
چکیده
K(+) channels play a crucial role in epithelia by repolarizing cells and maintaining electrochemical gradient for Na(+) absorption and Cl(-) secretion. In the airway epithelium, the most frequently studied K(+) channels are KvLQT1 and K(Ca). A functional role for K(ATP) channels has been also suggested in the lung, where K(ATP) channel openers activate alveolar clearance and attenuate ischemia-reperfusion injury. However, the molecular identity of this channel is unknown in airway and alveolar epithelial cells (AEC). We adopted an RT-PCR strategy to identify, in AEC, cDNA transcripts for Kir channels (Kir6.1 or 6.2) and sulfonylurea receptors (SUR1, 2A, or 2B) forming K(ATP) channels. Only Kir6.1 and SUR2B were detected in freshly isolated and cultured alveolar cells. To determine the physiological role of K(+) channels in the transepithelial transport of alveolar monolayers, we studied the effect, on total short-circuit currents (I(sc)), of basolateral application of glibenclamide, an inhibitor of K(ATP) channels, as well as clofilium, charybdotoxin, clotrimazole, and iberiotoxin, inhibitors of KvLQT1 and K(Ca) channels, respectively. Interestingly, activity of the three types of K(+) channels was detected, since all tested inhibitors decreased I(sc). Furthermore, these K(+) channel inhibitors reduced amiloride-sensitive Na(+) currents (mediated by ENaC) and completely abolished stimulation of Cl(-) currents by forskolin. Conversely, pinacidil, an activator of K(ATP) channels, increased Na(+) and Cl(-) transepithelial transport by 33-35%. These results suggest the presence, in AEC, of a K(ATP) channel, formed from Kir6.1 and SUR2B subunits, which plays a physiological role, with KvLQT1 and K(Ca) channels, in Na(+) and Cl(-) transepithelial transport.
منابع مشابه
Molecular diversity and function of K+ channels in airway and alveolar epithelial cells.
Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecul...
متن کاملRegulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells.
In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027-L1037, 2004), we identified an ATP-sensitive K(+) (K(ATP)) channel in alveolar epithelial cells, formed by inwardly rectifying K(+) channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of K(ATP), voltage-dependent K(+) channel KvLQT1, and calciu...
متن کاملChloride and potassium channel function in alveolar epithelial cells.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amilor...
متن کاملHalothane directly modifies Na+ and K+ channel activities in cultured human alveolar epithelial cells.
During inhalational anesthesia, halogenated gases are in direct contact with the alveolar epithelium, in which they may affect transepithelial ion and fluid transport. The effects of halogenated gases in vivo on epithelial Na+ and K+ channels, which participate in alveolar liquid clearance, remain unclear. In the present study, the effects of halothane (1, 2, and 4% atm) on ion-channel function...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004